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Abstract
The box-occupancy distributions arising from weighted rearrangements of
a particle system are investigated. In the grand-canonical ensemble, they
are characterized by determinantal joint probability generating functions.
For doubly non-negative weight matrices, fractional occupancy statistics,
generalizing Fermi–Dirac and Bose–Einstein statistics, can be defined. A
spatially extended version of these balls-in-boxes problems is investigated.

PACS numbers: 02.50.Ey, 02.50.−r, 05.30.Pr, 05.40.−a, 02.10.Yn
Mathematics Subject Classification: 60C05, 60E05, 05Axx, 82Bxx, 60-02

1. Introduction and outline

The purpose of this work is to study a class of combinatorial balls-in-boxes models as a random
allocation scheme of particles. Although the urn model under study is formally in the spirit
of those found, for example, in Charalambides [6], Johnson and Kotz [21], or Kolchin [24],
it is however not covered by these manuscripts. Another unrelated balls-in-boxes process
of similar flavor was recently revisited in [20], developing some equilibrium aspects of the
zeta-urn model first introduced in [4]. In some sense made precise later, the model we shall
deal with here is concerned with random box filling of an interacting particle system derived
from weighted permutations of its constitutive items.

We first describe our model in some detail. Suppose we are given a total amount of k � 1
labeled particles (items) of n different types (or colors), with n � 2. Let km,m = 1, . . . , n, be
the number of type-m particles in some initial configuration, with |kn| := k1 + · · · + kn = k

and kn = (km,m = 1, . . . , n). Initially place these k particles in boxes and, more specifically,
place the km type-m particles in box number m,m = 1, . . . , n, respectively. Suppose the
energy required to move a particle from box m to box m′ is − log Wm,m′ , where Wm,m′ is the
m × m′ entry of some non-negative n × n weight matrix W . We shall address the problem
of evaluating the configurational weight of all particle rearrangements which end up with
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kn particles in different boxes, regardless of their type. Upon suitable normalization, for
each Boltzmann weight matrix W , we shall use this to define the Gibbs canonical probability
generating function of the random box occupancies Kn,k = (Kn,k(m),m = 1, . . . , n), given
a total population of k particles. From this model, the event Kn,k = kn will be realized
not only because there are km type-m particles in box number m, but also because there is
rearrangement of this peculiar configuration, the weight of each being needed to evaluate
its occurrence probability. After suitably randomizing the particle number k, we shall rather
work with the grand-canonical probability generating function of the random occupancies Kn,z

where the ‘fugacity’ parameter z is in one-to-one correspondence with the average number
κ of particles in the system. We shall show that it has a determinantal form and that the
associated probabilities are rather permanental, that is, can be expressed in terms of the
permanence of some enlarged matrix derived from W . Since W has non-negative entries,
it turns out that the joint distribution of Kn,z is infinitely divisible (that is in the compound
Poisson class). As a result, it makes sense to raise the probability generating function of
Kn,z to the power α, for all α ∈ (0,∞). This leads to a fractional occupancy statistics
of order α, the special case α = 1 corresponding to the standard Bose–Einstein occupancy
model. Under the additional condition that W is definite non-negative, it makes sense to
raise the probability generating function of Kn,z to the power α, for all α ∈ {. . . ,−2,−1}:
for such distributions, the maximal number of particles within each box cannot exceed −α.
The special case α = −1 corresponds to the usual Fermi–Dirac occupancy model involving
an exclusion principle: no more than one particle within each box. Therefore, for doubly
non-negative weight matrices (that is, both non-negative and definite non-negative), fractional
occupancies of all order α ∈ {. . . ,−2,−1} ∪ (0,∞) can be defined. In the limit |α| ↗ ∞,
a Maxwell–Boltzmann occupancy model is found: grand-canonical box occupancies turn out
to be independent and Poisson distributed. All these allegations can easily be derived from
the version of the MacMahon master theorem which is relevant to our balls-in-boxes context,
respecting transition weights.

We now briefly describe the content of this paper in more details.
Section 2 is devoted to generalities on thermalized urn models and occupancies which are

of common use in the physics literature. Its purpose is to put this work in the physical context
of standard urn models. The remaining part concerns our specific balls-in-boxes problem just
described.

In section 3, we start illustrating our ideas in the case where W is a weight matrix with
{0, 1}−entries, starting with the flat matrix. Here, the configurational weight of particle
rearrangements simply counts the number of admissible rearrangements when a transition
from box m to box m′ is either forbidden or allowed, depending on whether Wm,m′ is 0 or
1. We discuss some examples in subsections 3.1 and 3.2; some are solvable, some are more
involved. Subsection 3.3 considers the full case of a real-valued weight matrix that is doubly
non-negative. Here we compute, for instance, the factorial moments of Kn,z, the 2-boxes joint
law of the occupancies (Kn,z(m1);Kn,z(m2)) and the marginal law of Kn,z(m). We prove that
the limiting distribution of Kn,z when α ↗ ∞ is the Maxwell–Boltzmann distribution. We
characterize the limit law of Kn,z/κ when the expected number κ of particles goes to infinity,
in terms of a specific multivariate gamma distribution.

Section 4 is devoted to what is needed of MacMahon master theorem which is relevant to
our balls-in-boxes context.

Finally, we shall address the following problem. Assume that particles can only be placed
in boxes in the positions −∞ < x1 � x2 � · · · � xn < ∞ on the real line. The box number
of a particle now is the index of its position on R and the model is spatially extended; a
particle is attached to the box number m if it stands at the mth position xm. The purpose of
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section 5 is to construct natural doubly non-negative weight matrices W which are indexed
by x := (x1, . . . , xn) ∈ R

n, representing particle positions on the line. They are adapted to
the spatially extended version of the occupancy problem. In such models, the m × m′ entry
Wm,m′ of W is of the form W(xm, xm′); using this, occupancy statistics can be considered when
−log W(xm, xm′) is now the energy required to move a particle from position xm to position
xm′ . The construction of such matrices parallels that of non-negative correlation functions
whose spectral measure is positive. We shall also discuss the relevance of the recent notion
of an infinitely divisible weight matrix, in the context of our investigations. Several examples
are supplied.

2. Generalities on thermalized urn models and occupancies

To fix the background and notations, we start with generalities on standard classes of
thermalized urn models before concentrating on the class of rearrangement urn models which
is the main purpose of this paper. Urn problems consist in simplified models at the cornerstone
between statistical mechanics and probability theory. The purpose of this introductory section
is to put this work in the physical context of ‘standard’ urn models.

Consider an urn model with n distinguishable boxes within which k particles are to
be allocated ‘at random’. Suppose first the energy required to put km particles within
the box number m,m = 1, . . . , n, is ekm,m > 0. We shall let kn := (k1, . . . , kn) and
|kn| := ∑n

m=1 km = k. Two cases then arise as follows.

(1) Either ekm,m depends explicitly on the box label m. A familiar example is ekm,m = kmεm

where εm is the energy required to put a single particle within the box number
m,m = 1, . . . , n. Typically, εm = mγ , for some γ > 1. Note that ekm,m is an increasing
sequence in both arguments (km,m). In this case, energy is box dependent (say BDE for
short).

(2) Or ekm,m does not depend on m; hence, ekm,m = ekm
where ekm

is simply assumed to
increase with km. In this case, energy is box independent (say BIE).

Define the total energy of a configuration or state kn, satisfying |kn| = k, to be∑n
m=1 ekm,m. Suppose the occupancy numbers within boxes are now random; call each of

them Kk,n(m);m = 1, . . . , n. With N := {0, 1, 2, . . .}, we use the notational convenience

Kk,n := (Kk,n(1), . . . , Kk,n(n)) ∈ N
n.

Therefore, Kk,n is the integral-valued random vector of occupancies counting the number of
particles within the n different boxes in a k-particle system.

Equilibrium occupancy distributions which can be dealt with are Gibbs distributions
for the probability law P(Kk,n = kn) of Kk,n. These laws can be obtained while
maximizing occupancies’ distribution entropy under the constraint that the average total energy
h := E(Hk,n) of the k-particle system configurations within n boxes is fixed; naturally, E(Hk,n)

denotes the mathematical expectation of Hk,n := ∑n
m=1 eKk,n(m),m. In this Lagrangian setup,

as usual, a parameter β (the reciprocal temperature) pops in; it is the Legendre conjugate of
the average energy h.

Depending now on whether particles to be allocated are distinguishable (labeled) or not
(unlabeled), two additional cases arise; finally, we are left with four possible cases which we
shall briefly outline.

• First, assume that particles to be allocated within labeled boxes are distinguishable or
labeled (as in the Maxwell–Boltzmann statistics, say MB for short).
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(a) If energy is box dependent, Kk,n follows the BDE-MB (box-dependent energy,
distinguishable particles) distribution if

P(Kk,n = kn) = 1

Zk,n(β)

n∏
m=1

σ
−β

km,m

km!
,

where the partition function

Zk,n(β) = [zk]
n∏

m=1

Qβ,m(z) and Qβ,m(z) =
∑
km∈N

zkm

km!
e−βekm,m

is a product of ‘exponential’ generating functions1. Here, σ
−β

km,m := e−βekm,m are the
usual Boltzmann weights. In addition, β and h := E(Hk,n) are Legendre conjugates,
related as usual through −∂β log Zk,n(β) = h for each (k, n) fixed.

(b) When energy is box independent, Kk,n follows the BIE-MB (box-independent energy,
distinguishable particles) distribution if

P(Kk,n = kn) = 1

Zk,n(β)

n∏
m=1

σ
−β

km

km!
,

where, with σk := exp ek ,

Zk,n(β) = [zk]Qβ(z)n and Qβ(z) =
∑
k∈N

zk

k!
e−βek .

In this case, the random variables Kk,n are exchangeable in the sense that, for all
permutation σ of {1, . . . , n},
P(Kk,n(m) = km;m = 1, . . . , n) = P(Kk,n(m) = kσm

;m = 1, . . . , n),

and the joint law of Kk,n is a symmetric function of kn = (k1, . . . , kn).

Examples. If we set ek = −δ(k, 0) with δ the Kronecker symbol, then we get the
Backgammon model whose glassy behavior has been extensively studied [16, 17, 27].

When β ↘ 0 (the infinite temperature limit), regardless of the energy sequence ek ,
the limiting occupancy distribution is multinomial as it reads

P(Kk,n = kn) = 1

nk

k!∏n
m=1 km!

.

It corresponds to the equilibrium occupancies of the celebrated Ehrenfest model with
n � 2 boxes [10]. Solving the corresponding transient Fokker–Planck equation of
the Ehrenfest model requires some computational skill. For this, see [22, 23] and
also the recent combinatorial ‘tour de force’ of [13].

• Assume now that particles are undistinguishable or unlabeled (as in the Bose–Einstein
statistics, say BE).
(a) If energy is box dependent, Kk,n follows the BDE-BE distribution if

P(Kk,n = kn) = 1

Zk,n(β)

n∏
m=1

σ
−β

km,m,

where the partition function

Zk,n(β) = [zk]
n∏

m=1

Pβ,m(z) with Pβ,m(z) =
∑
km∈N

zkm e−βekm,m

is now the product of ‘ordinary’ generating functions.

1 In the latter formula and in the forthcoming article, [zk]f (z) will stand for the zk-coefficient in the series expansion
of the function f (z).
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(b) If energy is box independent, Kk,n follows the BIE-BE distribution if

P(Kk,n = kn) = 1

Zk,n(β)

n∏
m=1

σ
−β

km
,

where

Zk,n(β) = [zk]Pβ(z)n and Pβ(z) =
∑
k∈N

zk e−βek .

Example. Assume that one further specifies in that
ek

k
→

k↗∞
0,

meaning that energy is sub-linear. The first example one could think of is ek = kγ where
γ ∈ (0, 1); as a second suitable example, ek = log(1 + k) would do. Interest in such specific
allocation models is because they are likely to present a phase transition (condensation)
phenomenon at all temperatures in the first example and when temperature is small enough in
the second example.

The BIE-BE model, with ek = log(1+k) or equivalently σk = 1+k, corresponds precisely
to the zeta urn model (see [4, 15]).

We now proceed with the rearrangement urn models under concern.

3. Multi-type weighted particle rearrangements

From now on, the remaining part of the paper concerns our specific balls-in-boxes problem as
one arising from weighted particle rearrangements, as was briefly described in the introduction.
The model we shall deal with is concerned with random box filling of an interacting particle
system derived from weighted permutations of its constitutive items. As also indicated in
the introduction, we first start with the simplest rearrangement case before extending the
construction to more general weight matrices.

3.1. The simple rearrangement case

Suppose we are given a total amount of k � 1 labeled particles (items) of n different types
(or colors), with n � 2. Let km,m = 1, . . . , n, be the number of type-m particles in some
initial configuration, with |kn| := k1 + · · · + kn = k. Place km particles in the box number
m,m = 1, . . . , n, respectively. When considering the problem of enumerating the number of
ways to permute these kn particles ending up with kn particles in the different boxes (or urns),
the following generating function proves necessary:

1

1 − z(u1 + · · · + un)
=

∑
kn∈N

n

z|kn| |kn|!∏n
m=1 km!

n∏
m=1

ukm

m .

Here u := (u1, . . . , un) ∈ [0, 1]n ‘marks’ the different types of particles and z ∈ [0, zc := 1/n)

is a ‘marker’ of the total number of particles. From this, interpreting the above generating
function as an ‘exponential’ generating function, extracting the Taylor coefficients in the
variables

∏n
m=1 ukm

m of its series expansion, as conventional wisdom suggests, there are |kn|! =
k! ways to permute the kn labeled (distinguishable) particles. In other words, if S(kn) is the
set of all such permutations, then |S(kn)| = |kn|!. This is poorly informative, so far.

Would the particles be unlabeled within each type class, there would clearly be |kn|!∏n
m=1 km!

ways to permute the kn unlabeled particles, looking the above generating function as an
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‘ordinary’ generating function and simply extracting the coefficients in the variables
∏n

m=1 ukm
m

of its series expansion. In this case, a permutation is called a rearrangement of the word
1k1 , . . . , nkn . Clearly, when assigning u1 = · · · = un = 1, the [zk]-coefficient of (1 − zn)−1,
which is nk, will count the number of ways to permute (rearrange) k unlabeled particles of n
different types, regardless of the number of particles within each class.

Assuming for example n = 2, k1 = 2, k2 = 1, k = 3, identifying the two particles of the
first type, there are three different possible rearranged words out of 1221, namely 11 2, 12 1
and 21 1, whereas there are 23 = 8 ways to permute three unlabeled particles of two different
types: ∅ 222, (1 22, 2 12, 2 21), (11 2, 12 1, 21 1) and 111 ∅ corresponding respectively to the
partitions (k1, k2) = (0, 3), (1, 2), (2, 1) and (3, 0) of k = 3. Here ∅ is the empty box ‘word’.
For more details on rearrangements, see [5].

Let W = J where J is the n × n flat ‘weight’ matrix whose entries are all equal to 1, for
which Spect(W) = {0, . . . (n − 1) times . . . , 0; n}. With |W | := det(W) and U := diag(u), it
turns out that

1

1 − z(u1 + · · · + un)
= |I − zUW |−1.

Next, we note that[
z|kn|

n∏
m=1

ukm
m

km!

]
log|I − zUW |−1 = (|kn| − 1)!

counts the number of ways to permute cyclically the kn labeled particles, when restrictingS(kn)

to Sc(kn), the set of all connected (one cycle) permutations, clearly with |Sc(kn)| = (|kn|−1)!.
With α > 0 now ‘marking’ the number of cycles, this suggests us to also consider the

generating function

|I − zUW |−α = e−α log|I−zUW |.
With p ∈ N, the generating function [αp]|I − zUW |−α is the one counting the permutations
of n types of particles, when restricting them to be a collection of p disconnected cycles. In
particular, [α]|I −zUW |−α = − log|I −zUW | counts the permutations of n types of particles,
when restricting them to be simple cycles. We shall return to this point later.

3.1.1. Canonical and grand-canonical randomization. Let Kn,k := (Kn,k(m),m =
1, . . . , n) denote an integral-valued random vector which will stand for occupancies of the
boxes m = 1, . . . , n given a total population of k particles.

Given |kn| = k, define naturally the (conditional) probability that Kn,k(m) = km,m =
1, . . . , n, by the ratio of their configuration numbers

P(Kn,k = kn) =
(

k

k1,...,kn

)
[zk](1 − zn)−1

1(|kn| = k).

The event Kn,k = kn will be realized not only because there are km type-m particles in the
box number m, but also because there is rearrangement of this peculiar configuration. In other
words,

E

(
n∏

m=1

uKn,k(m)
m

)
= [zk](1 − z(u1 + · · · + un))

−1

[zk](1 − zn)−1

is its canonical (conditional) probability generating function.
To avoid considering the simplex |kn| = k, suppose one randomizes the total number k

of particles as follows: let there be a random number Kn,z of particles, where

P(Kn,z = k) = zk[zk](1 − zn)−1

(1 − zn)−1
.
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In other words, with u ∈ [0, 1],

E(uKn,z ) = |I − zW |
|I − zuW | = 1 − zn

1 − zun

is the (geometric) generating function of Kn,z. Then, parameters z and 0 < κ := E(Kn,z) are
related through

κ := κ(z) = zn

1 − zn
,

and, since ‘fugacity’ z ∈ [0, zc = 1/n), these are in one-to-one correspondence. Given
κ := E(Kn,z) = zn

1−zn
, define next the probability that Kn,z(m) = km,m = 1, . . . , n, simply

by

P(Kn,z = kn) =
z|kn|( |kn|

k1,...,kn

)
(1 − zn)−1

, kn ∈ N
n.

In other words, with W = J ,

E

(
n∏

m=1

uKn,z(m)
m

)
= (1 − z(u1 + · · · + un))

−1

(1 − zn)−1
= |I − zW |

|I − zUW |
stands for its (grand canonical) probability generating function, now conditioned on the
expected number κ(z) of particles in the system.

3.1.2. Asymptotics for κ ↗ ∞. One suspects that, for fixed n, the following convergence in
distribution will hold:

Kn,z

κ

d→κ↗∞ Xn,

where Xn := (X(1), . . . , X(n)) is an n-dimensional random vector supported by R
n
+. Let us

prove this and characterize the joint law of Xn. Recalling κ := κ(z) = zn
1−zn

, let us assume
z = (1 − ε)/n where, ε being close to 0+, κ , which is of order ε−1, tends to ∞. Then, with
s :=(s1, . . . , sn) and S := diag(s),

E

(
n∏

m=1

e−smKn,z(m)/κ

)
∼ E

(
n∏

m=1

e−εsmK
n,n−1(1−ε)

(m)

)

= ε

1 − (1 − ε)
(∑n

1 e−εsm

) /
n

∼ ε

1 − (1 − ε)
(
n − ε

∑n
1 sm

) /
n

∼ 1

1 +
(∑n

1 sm

) /
n

= 1

|I + zcSW | = E

(
n∏

m=1

e−smX(m)

)
.

This is the Laplace Stieltjes transform of a symmetric exponentially distributed random
vector Xn, with one-dimensional marginals E(e−smX(m)) = 1

1+sm/n
,m = 1, . . . , n, those of

exponentially distributed random variables on R+ with mean n−1.

3.1.3. Fractional statistics. Let zα := z/α. We shall also be interested in random variables
with distributions Pα defined by

Eα

(
n∏

m=1

uKn,z(m)
m

)
=

(
1 − z

α
(u1 + · · · + un)

)−α(
1 − z

α
n
)−α

=
( |I − zαW |

|I − zαUW |
)α

,
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where α ∈ {. . . ,−2,−1} ∪ (0,∞) and z < α/n if α > 0 or z � 0 if α ∈ {. . . ,−2,−1}.
Since W = J , with (α)k := α(α + 1) . . . (α + k − 1), this is

Pα(Kn,z = kn) = (1 − zαn)α · z|kn|
α

(α)|kn|∏n
m=1 km!

, kn ∈ N
n.

When α = −i < 0, the range of Kn,z is kn ∈ {0, . . . , i}n. For instance, for kn ∈
{0, 1}n, P−1(Kn,z = kn) is the (Fermi-) joint probability to find one (respectively, no) particle
in the box number mq if kmq

= 1 (respectively, if kmq
= 0). Thus, when W = J, Kn,z is well

defined under Pα for all α ∈ {. . . ,−2,−1} ∪ (0,∞). In particular,

Eα(uKn,z ) =
(

1 − zαn

1 − zαun

)α

,

showing that Kn,z has negative binomial (α, zαn) distribution (when α > 0) or multinomial
(−α, (−zαn)/(1−nzα)) distribution (α ∈ {. . . ,−2,−1}), with mean κ := Eα(Kn,z) = zn

1−nzα
.

Such α-distributions may be thought of as fractional occupancy statistics of order α. When
α = −1, α = +1, |α| ↗ ∞ we get a usual Fermi–Dirac, Bose–Einstein or Maxwell–
Boltzmann distribution for Kn,z, respectively. When α = k/2 where k is any integer, we get
a para-Boson statistics (see [1, 19]). One of the questions next raised is: for which W is Kn,z

well defined for all α in the positivity spectrum {. . . ,−2,−1} ∪ (0,∞)?

3.2. Weighted restricted rearrangements: {0, 1}-weight matrix

These elementary considerations first suggest to introduce more generally the quantities
|I − zUW |−1, where W is now a n × n weight matrix whose entries all belong to {0, 1}. By
doing so, we address the problem of enumerating the number of ways to permute the |kn| = k

particles when the transition from type m to type m′ is allowed at the only condition that entry
Wm,m′ = 1. Define formally the energy (cost) of transition m → m′ as Hm,m′ := − log Wm,m′ .
Then, would Wm,m′ = 0, the transition from type m to type m′ is forbidden as the energy
required to realize this transition is infinite. Would Wm,m′ = 1, the transition m → m′ requires
no particular energy. Proceeding in this way, the random occupancies Kn,z are now dictated
by the weighted restricted rearrangements encoded by W . For related problems, see [9].

The quantity |I − zUW |−1 is defined for u : =(u1, . . . , un) ∈ [0, 1]n and z ∈ [0, zc :=
1/ρ(W)) where, with λm;m = 1, . . . , n, the spectrum of W,ρ(W) = ‖W‖ = max(|λm|,m =
1, . . . , n) is the spectral radius of W. The critical fugacity zc is the reciprocal of the spectral
radius of W and |I − zUW |−1 first becomes singular at zc. Since all such W are non-negative,
by the Perron–Foebenius theorem, the eigenvalue with the largest modulus is real. Since
W only has {0, 1}−entries, ρ(W) ∈ [1, n] and so zc ∈ [1/n, 1]. The weighted random
occupancies Kn,z(m),m = 1, . . . , n, can be defined accordingly. As we shall indeed see later
in the following section, such random variables are well defined; in fact they are always well
defined as soon as W has non-negative entries. This is because the Taylor coefficients in the
variables

∏n
m=1 ukm

m of the series expansion of |I−zW |
|I−zUW | are the permanents Per(W(kn)). Here,

W(kn) are the |kn| × |kn| matrix obtained by repeating (removing and deleting) each Wm,m′

into a size km × km′ block if km and km′ are both positive (otherwise). Permanents of a matrix
with non-negative entries are non-negative. Note that the basic quantity appearing in the law
of Kn,z reads |I − zW |−1 = ∏n

m=1(1 − zλm)−1.

Similarly, random variables Kn,z with law Pα parameterized by α > 0 are well defined for
all α > 0 when W has in particular non-negative entries. This is because the Taylor coefficients
in the variables

∏n
m=1 ukm

m of the series expansion of
( |I−zαW |

|I−zαUW |
)α

are now proportional to the
α-permanents Perα(W(kn)). α-permanents of a matrix with non-negative entries are non-
negative (see the following section). In all such cases, random variables Kn,z with law
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Pα (where α > 0) are infinitely divisible that is in the compound Poisson class. When
α ∈ {. . . ,−2,−1}, a necessary and sufficient condition for Kn,z with law Pα to be well
defined is that W has all its 2n principal minors non-negative (see [29], Prop. 6.1 for the
necessity condition). If Kn,z with law Pα is to be defined for all α ∈ {. . . ,−2,−1} ∪ (0,∞),
a sufficient condition is that W has all its principal minors non-negative and is non-negative.
If W is in addition symmetric, then a doubly non-negative W would do (doubly non-negative
matrices are those which are both definite non-negative and with non-negative entries).

Examples.

• Assume W = I. Then, with z < zc = 1,

|I − zUW |−1 =
n∏

m=1

(1 − zum)−1 = 1

1 − ⊕n
m=1(zum)

,

where x1 ⊕ x2 = x1 + x2 − x1x2 is the commutative and associative probabilistic sum.
Here, [

z|kn|
n∏

m=1

ukm
m

km!

]
|I − zUW |−1 =

n∏
m=1

km!

counts the number of ways to permute the kn labeled particles when the image particle is
forced to return back to its own type. Therefore,

E(uKn,z ) = |I − zW |
|I − zuW | =

(
1 − z

1 − zu

)n

is the generating function of Kn,z, with mean κ = (nz)/(1 − z). The zk-coefficient of
(1 − z)−n is n+k−1

k
.

Clearly, in this interaction-free case,

Kn,z

κ

d→κ↗∞ Xn,

where the components of the random vector Xn are independent and identically distributed
(iid), mean 1, exponentially distributed random variables on R+.

• In the last two examples, the weight matrix is definite non-negative. It has all principal
minors non-negative. The canonical form of a {0, 1}-valued definite non-negative weight
matrix W is made of p flat Jordan blocks Jq (of type J ), q = 1, . . . , p, where the
sizes of Jq are nq × nq, q = 1, . . . , p, with

∑p

q=1 nq = n and 1 � n1 � · · · � np.
Since W is symmetric, outside the Jordan blocks, W has zero entries and so is block
diagonal. The number of such matrices, therefore, is the number of partitions of n. The
spectrum of W is Spect(W) = ∪p

q=1{0, . . . (nq − 1) times . . . , 0; nq} and with n0 := 0
and nq := ∑q

r=0 nq, q = 0, . . . , p,

|I − zUW |−1 =
p∏

q=1

(
1 − z

(
unq−1+1 + · · · + unq

))−1

= [
1 − ⊕p

q=1

(
z(unq−1+1 + · · · + unq

)
)]−1

,

defined for z < 1/np. Representing the above partition sequence 1 � n1 � · · · � np

by the sequence 0 =: m0 < 1 � m1 < · · · < mr where each mq, q = 1, . . . , r , has
multiplicity dq now with

∑r
q=1 dqmq = n,

E(uKn,z ) = |I − zW |
|I − zuW | =

r∏
q=1

(
1 − zmq

1 − zumq

)dq
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is the generating function of Kn,z, with mean

κ =
r∑

q=1

(zdqmq)/(1 − zmq).

The first introductory example (W = J ) corresponds to an irreducible case with
r = 1,m1 = n and d1 = 1, whereas the second example (W = I ) is completely
reducible with r = 1,m1 = 1 and d1 = n.

For this class of W, Kn,z is well defined under Pα for all α ∈ {. . . ,−2,−1} ∪ (0,∞).
• (Derangements) Assume now that W = J −I which is symmetric but not definite positive.

One can check that Spect(W) = {−1, . . . (n − 1) times . . . ,−1; n − 1}. Then, with
z < zc = 1/(n − 1), it holds that

|I − zUW |−1 = 1

1 − ∑n
p=2 zp(p − 1)σp(u)

,

where

σp(u) =
∑

1�m1<···<mp�n

p∏
q=1

umq

are the elementary symmetric functions. For this example,[
z|kn|

n∏
m=1

ukm
m

km!

]
|I − zUW |−1

counts the number of ways to permute the kn labeled particles, when no permuted particle
is allowed to return to its own type. A permutation in this class is called a derangement
(see [18]).

In this case, with 0 � z < 1/ρ(W) = 1/(n − 1), we get

|I − zW |−1 = 1

1 − ∑n
p=2 zp(p − 1)

n

p

= 1

(1 + z)n−1[1 − (n − 1)z]

with [zk]|I − zW |−1 = ∑k
l=0(−1)l

(
n+l−2

l

)
(n − 1)k−l � 0. So, for instance,

E(uKn,z ) = |I − zW |
|I − zuW | =

(
1 + z

1 + zu

)n−1 1 − (n − 1)z

1 − (n − 1)zu

is the generating function of Kn,z, with mean

κ = (n − 1)z

[
1

1 − (n − 1)z
− z

1 + z

]
.

For this class of W, Kn,z is well defined under Pα for all α ∈ (0,∞) (see [14]) but, since
the principal minors can be negative, not for α ∈ {. . . ,−2,−1}.

• If W is any of the (n − 1)! orthogonal matrices of a cyclic (connected) permutation

|I − zUW |−1 = 1

1 − ∏n
m=1(zum)

, z < zc = 1.

For this example, there is no way to permute the kn labeled particles, unless all
km = k1,m = 1, . . . , n, in which case this number is (k1!)n. Here,

E(uKn,z ) = |I − zW |
|I − zuW | = 1 − zn

1 − (zu)n
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is the generating function of Kn,z, with mean κ = (nzn)/(1 − zn). Note that the spectrum
of W consists in the n roots of unity. With λm = e2iπ(m−1)/n,m = 1, . . . , n, note the
identity

∑n
m=1

zλm

1−zλm
= nzn

1−zn = κ.

Clearly, in this case

Kn,z

κ

d→κ↗∞ Xn,

where, with E
( ∏n

m=1 e−smX(m)
) = (

1 +
(∑n

1 sm

)
/n

)−1
, Xn has symmetric multivariate

exponential distribution.
For this class of W, Kn,z is well defined under Pα for all α ∈ (0,∞) but, since the

principal minors can be negative, not for α ∈ {. . . ,−2,−1}.
The next two examples are more involved and would require some additional knowledge

of the weight matrix spectrum.

• Periodic nearest neighbors interactions. Assume W1,2 = W1,n = 1;Wm,m+1 = Wm,m−1 =
1,m = 2, . . . , n − 1, and Wn,1 = Wn,n−1 = 1, the other entries being all equal to 0. In
this case, ρ(W) = 2 and zc = 1/2. Matrix W is symmetric with real eigenvalues. In a
standard (non-periodic) nearest neighbors interactions model, W1,n = Wn,1 = 0 and W is
strictly tridiagonal.

• Tournaments. Assume Wm,m = 0,m = 1, . . . , n. For all m′ > m, fix Wm,m′ ∈ {0, 1} and
force Wm′,m = 1 − Wm,m′ so that

∑
m,m′ Wm,m′ = (

n

2

)
. Each W fulfills W + W ′ = J − I .

There are 2n(n−1)/2 tournaments as issues of pair matching games with n players.

Remark. The distribution of Kn,z is exchangeable if and only if E
(∏n

m=1 u
Kn,z(m)
m

) =
E

(∏n
m=1 u

Kn,z(m)
σm

)
for all permutation σ of {1, . . . , n}, in other words, if and only if |I − zUW |

is a symmetric function of u := (u1, . . . , un). This will be the case under the following
special conditions: W = aI + b(J − I ), where a and b belong to {0, 1}. Thus, when
W = I,W = J − I or W = J. This is also the case when W is the weight matrix of a cyclic
(connected) permutation. In all these cases, for each order, all principal minors of W coincide,
which is a necessary and sufficient condition for the distribution of Kn,z to be exchangeable.
This is clear from the development of |I − zUW | in terms of all principal minors of W .

3.3. Rearrangements from doubly non-negative weight matrices

Let W be an arbitrary weight matrix with real non-negative entries and with non-negative
principal minors. With zα := z/α, we are interested in random variables Kn,z with probability
generating functions

Eα

(
n∏

m=1

uKn,z(m)
m

)
=

( |I − zαW |
|I − zαUW |

)α

,

where α ∈ {. . . ,−2,−1} ∪ (0,∞) and z < α/n if α > 0 or z � 0 if α ∈ {. . . ,−2,−1}.
These random variables are well defined for all α in the prescribed range and infinitely divisible
when α > 0. They correspond to occupancy α-distributions arising from rearrangements with
weight W. If W is in addition symmetric, then W belongs to the class of doubly non-negative
matrices.

For general doubly non-negative real-valued matrices, Kn,z is well defined under Pα where
α varies in the announced range.
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3.3.1. Factorial moments of Kn,z. Let km � 0,m = 1, . . . , n, and {n}k := n(n − 1) . . . (n −
k + 1), {n}0 := 1. Define the factorial moments of Kn,z to be

µα(kn) := Eα

(
n∏

m=1

{Kn,z(m)}km

)
.

We have

Eα

(
n∏

m=1

uKn,z(m)
m

)
=

( |I − zαW |
|I − zαUW |

)α

=
( |I − zαW |

|I − zαW − zα(U − I )W |
)α

= (|I − (U − I )zαW(I − zαW)−1|)−α =:
(∣∣I − (U − I )Wzα

∣∣)−α
.

Therefore, the factorial moments µα(kn) of Kn,z exist; they are given by the Taylor coefficients
in the variables

∏n
m=1(um − 1)km of the series expansion of

(∣∣I − (U − I )Wzα

∣∣)−α
, namely

Perα
(
Wzα

(kn)
)
, where Wzα

= zαW(I − zαW)−1 is the resolvent matrix of W. If W has
non-negative entries, so does Wzα

and therefore the factorial moments of Kn,z, namely
Perα

(
Wzα

(kn)
)

are non-negative. If W is definite positive with positive eigenvalues λm,
so does Wzα

with eigenvalues (zαλm)/(1 − zαλm). For doubly non-negative weight matrices,
µα(kn) are well defined for all α in the full range {. . . ,−2,−1} ∪ (0,∞).

3.3.2. Marginal distribution of Kn,z(m). With Um a diagonal matrix whose m × m entry is
um, all other diagonal entries being 1, with zα := z/α, we have

Eα

(
uKn,z(m)

m

) =
( |I − zαW |

|I − zαUmW |
)α

=
( |I − zαW |

|I − zαW − zα(Um − I )W |
)α

= (|I − (Um − I )zαW(I − zαW)−1|)−α = (∣∣I − (Um − I )Wzα

∣∣)−α

= (1 − (um − 1)
(
Wzα

)
m,m

)−α =:

(
1 − pm

1 − pmum

)α

.

Since
(
Wzα

)
m,m

� 0, when α > 0, this is the distribution of a negative binomial random

variable with parameters
(
α, pm := (Wzα )m,m

1+(Wzα )m,m

)
. Here, pm is the success probability depending

on z and α. When α ∈ {. . . ,−2,−1}, this generating function is that of a multinomial
distribution with parameters

(−α, πm := −(
Wzα

)
m,m

)
, where πm now is the probability that

the underlying Bernoulli random variable takes the value 1.

Note from this analysis that in any case for α,

κ := Eα(Kn,z) = α

n∑
m=1

(
Wzα

)
m,m

= α · tr
(
Wzα

)
.

3.3.3. Joint distribution of (Kn,z(m1),Kn,z(m2)). Let 1 � m1 < m2 � n. With Um1,m2 a
diagonal matrix whose entries m1 × m1 and m2 × m2 are um1 and um2 respectively, all other
diagonal entries being 1, we have

Eα

(
uKn,z(m1)

m1
uKn,z(m2)

m2

) =
( |I − zαW |

|I − zαUm1,m2W |
)α

= (∣∣I − (
Um1,m2 − I

)
Wzα

∣∣)−α

=

1 −

∑
i∈{1,2}

(
umi

− 1
)(

Wzα

)
mi,mi

+
(
um1 − 1

)(
um2 − 1

)∣∣Wzα
(m1,m2)

∣∣



−α

,
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where
∣∣Wzα

(m1,m2)
∣∣ is the corresponding minor of Wzα

. From this, we get in particular

Covα(Kn,z(m1),Kn,z(m2)) = α
[(

Wzα

)
m1,m1

(
Wzα

)
m2,m2

− ∣∣Wzα
(m1,m2)

∣∣]
= α

(
Wzα

)
m1,m2

(
Wzα

)
m2,m1

,

which is non-negative when Wzα
(or W ) is non-negative or when Wzα

(or W ) is symmetric
(in particular, definite positive). When α > 0, (Kn,z(m1),Kn,z(m2)) are positively correlated.
Note that the above covariance decreases with α and that Covα(Kn,z(m1),Kn,z(m2))→α↗∞ 0.

In sharp contrast, when α ∈ {. . . ,−2,−1}, these random variables are negatively correlated.

3.3.4. Limiting distribution of Kn,z when α ↗ ∞. To the first order in α, the exponential-
trace expression of the determinant gives

Eα

(
n∏

m=1

uKn,z(m)
m

)
=

( |I − zαW |
|I − zαUW |

)α

→
α↗∞

e− tr(zW)+ tr(zUW) =
n∏

m=1

e−z(1−um)Wm,m .

This shows that asymptotically

Kn,z
d→

α↗∞
Pn,z,

where Pn,z := (Pn,z(1), . . . , Pn,z(n)) are mutually independent Poisson distributed random
variables with respective intensities zWm,m, proportional to the diagonal terms of W. This is
the limiting Maxwell–Boltzmann distribution for Kn,z.

3.3.5. Limit law of Kn,z/κ when κ ↗ ∞. First assume that α = 1 and let zc := 1/ρ(W).

Assume that W differs from the identity. Letting z := zc(1 − ε), κ = tr(Wz) grows like ε−1,
to the first order in ε. This is because κ = ∑n

1(zλm)/(1 − zλm) where (λm,m = 1, . . . , n) are
the eigenvalues of W with ρ(W) being the largest (real) of these: this model does not show
phase transition phenomena because κ := κ(z) is always divergent at critical fugacity zc.

Now, with s :=(s1, . . . , sn)
′ and S := diag(s),

E

(
n∏

m=1

e−εsmKn,z(m)

)
∼

ε↘0

|I − zc(1 − ε)W |
|I − zc(1 − ε)(1 − εS)W |

∼
ε↘0

|I − zcW + εzcW |
|I − zcW + εzc(I + S)W | .

Observing |I − zcW | = 0, the exponential-trace expansion of the determinant gives, in this
singular case,

|I − zcW + εzcW | ∼
ε↘0

ε · tr(zcW · adj(I − zcW)),

where adj(A) is the adjugate matrix of A. Thus,

E

(
n∏

m=1

e−εsmKn,z(m)

)
→
ε↘0

tr(zcW · adj(I − zcW))

tr((I + S)zcW · adj(I − zcW))
=: E

(
n∏

m=1

e−smXn(m)

)
.

This shows that asymptotically
Kn,z

κ

d→
κ↗∞

Xn,

where the law of Xn := (Xn(1), . . . , Xn(n)) is characterized by the above joint Laplace–
Stieltjes transform. Developing the traces, with 〈s, Xn〉 the scalar product of s � 0 and Xn,
we get more specifically
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E(e−〈s,Xn〉) =
(

1 +
n∑

m=1

smµm

)−1

= (1 + 〈s, µn〉)−1,

where µn := (µ1, . . . , µn), µm = bm

/∑n
1 bk and bm = (zcW · adj(I − zcW))m,m,m =

1, . . . , n, are the diagonal terms of the matrix zcW · adj(I − zcW). In any case, it holds
that

∑n
1 µm = 1 so that

∑n
1 Xn(m) has mean 1 exponential law. The marginals of Xn are

exponentially distributed with mean µm. Note that, unless some special conditions hold on
W , the distributions of Kn,z and Xn are not exchangeable. The telling feature of the Xn-law is
that any linear non-negative combination of its components remains exponentially distributed.

When α > 0, considering the model Kn,z now under Pα , similar arguments would show
that, with κ = tr

(
Wzα

)
,

Kn,z

κ

d→
κ↗∞

Xn,

where the law of Xn is now a multivariate-gamma distribution given by

E(e−〈s,Xn〉) =
(

1 +
n∑

m=1

smµm

)−α

= (1 + 〈s, µn〉)−α,

where µn is now given in terms of the following bm:

bm = (zc,αW · adj(I − zc,αW))m,m, m = 1, . . . , n,

with zc,α := zc/α. The latter Laplace–Stieltjes transform of Xn is well defined because for
all s > 0, all λ > 0, E(e−λ〈s,Xn〉), which is the Laplace–Stieltjes transform of the positive
scalar random variable 〈s, Xn〉, is a Bernstein (completely monotone) function of the gamma
type. The general shape of the moment generating function of a multivariate gamma random
variable Xn is determinantal such as E(e−〈s,Xn〉) = |I + SM|−α for some admissible matrix
M. In our case, M takes the particular form: M = [µ11, . . . ,µn1], where 1 : = (1, . . . , 1)′.
The spectrum of such matrices is

{
0, . . . (n − 1) times . . . , 0;∑n

1 µm = 1
}

with non-negative
real eigenvalues only; by Proposition 4.6 of Vere-Jones [29], it gives a well-defined Laplace–
Stieltjes transform.

4. Combinatorics related to MacMahon master theorem

In this section, we shall develop some combinatorial aspects of the MacMahon master theorem
which are useful to our purposes. We shall let N = {0, 1, 2, . . .}, N∗ = {1, 2, . . .}.

We shall assume that W is an n×n non-negative weight matrix, with |W | = det(W). We
shall let Per W stand for the permanent of W. We recall that kn = (k1, . . . , kn) ∈ N

n, |kn| =
k1 + · · · + kn. u =(u1, . . . , un) ∈ [0, 1]n and that U = diag(u), I = Identity. Define W(kn) to
be the |kn|× |kn| matrix obtained by repeating (removing and deleting) each Wm,m′ into a size
km × km′ block if km and km′ are both positive (otherwise). Assuming that z ∈ [0, 1/ρ(W)),
we have

|I − zUW |−1 =
∑

kn∈N
n

z|kn|
n∏

m=1

ukm

m

[
n∏

m=1

ukm

m

]
n∏

m=1

(Wu)km

m

=
∑

kn∈N
n

z|kn|
n∏

m=1

ukm
m

km!
Per W(kn)

=
∑

kn∈N
n

z|kn|
n∏

m=1

ukm
m

km!

∑
σ∈S(kn)

∏
m,lm

Wm,σ1(m,lm)
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where if σ(m, lm) = (m′, l′), lm = 1, . . . , km,m = 1, . . . , n, σ1(m, lm) = m′ gives the type
of the image of particle lm in the class m. In the formulae displayed above, the first identity
is due to MacMahon (see [8], for a short proof). It took some time to realize that the Taylor
coefficients in u of the above expression can in fact be identified to the permanent of W(kn)

which is the content of the subsequent expressions (see [29, 30] for historical remarks and
background).

Remark. If W is diagonal, with positive diagonal entries (λm,m = 1, . . . , n), one can check
that Per W(kn) = ∏n

m=1

(
km!λkm

m

)
so that, as required,

|I − zUW |−1 =
∑

kn∈N
n

z|kn|
n∏

m=1

ukm

m λkm

m =
n∏

m=1

(1 − zumλm)−1.

Let α > 0 or α ∈ {−1,−2, . . .}. Let cyc(σ ) be the number of cycles in σ ∈ S(kn). Then,

|I − zUW |−α =
∑

kn∈N
n

z|kn|
n∏

m=1

ukm
m

km!
PerαW(kn)

=
∑

kn∈N
n

z|kn|
n∏

m=1

ukm
m

km!

∑
σ∈S(kn)

αcyc(σ )
∏
m,lm

Wm,σ1(m,lm)

=
∑

kn∈N
n

(αz)|kn|
n∏

m=1

ukm
m

km!

∑
σ∈S(kn)

(
1

α

)|kn|−cyc(σ ) ∏
m,lm

Wm,σ1(m,lm).

Thus, ∣∣∣I − z

α
UW

∣∣∣−α

=
∑

kn∈N
n

z|kn|
n∏

m=1

ukm
m

km!

∑
σ∈S(kn)

(
1

α

)|kn|−cyc(σ ) ∏
m,lm

Wm,σ1(m,lm)

and ∣∣∣I − z

α
UW

∣∣∣−α

= 1

1 − (
1 − |I − z

α
UW |α)

with

1 −
∣∣∣I − z

α
UW

∣∣∣α =
∑

kn∈N
n

(−z)|kn|
n∏

m=1

ukm
m

km!

∑
σ∈S(kn)

(−1

α

)|kn|−cyc(σ ) ∏
m,lm

Wm,σ1(m,lm).

Further, with ‘tr’ standing for trace, the weight function

σ → wα(σ) = αcyc(σ )
∏
m,lm

Wm,σ1(m,lm)

being multiplicative (equal to the product of the weights over the connected components
of σ ),

−α log
∣∣∣I − z

α
UW

∣∣∣ =
∑
k�1

(
1

α

)k−1
zk

k
tr({UW }k)

=
∑

kn∈N
n
∗

z|kn|
n∏

m=1

ukm
m

km!

∑
σ∈Sc(kn)

(
1

α

)|kn|−1 ∏
m,lm

Wm,σ1(m,lm),

where Sc(kn) is the subset of connected permutations σ from S(kn), satisfying cyc(σ ) = 1
and σ(n, kn) = (1, 1). Thus,
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z|kn|

n∏
m=1

ukm
m

km!

] {
−α log

∣∣∣I − z

α
UW

∣∣∣} =
∑

σ∈Sc(kn)

(
1

α

)|kn|−1 ∏
m,lm

Wm,σ1(m,lm)

involves cyclic weight products
∏n

m=1

∏km

lm=1 Wm,σ1(m,lm), since σ ∈ Sc(kn) with σ1(n, kn) = 1.

In particular, [
z|kn|

n∏
m=1

ukm
m

km!

]
{− log |I − zUW |} =

∑
σ∈Sc(kn)

∏
m,lm

Wm,σ1(m,lm) = w1(Sc(kn)).

If in particular α = −1, then

|I + zUW | =
∑

kn∈N
n

z|kn|
n∏

m=1

ukm
m

km!

∑
σ∈S(kn)

(−1)|kn|−cyc(σ )
∏
m,lm

Wm,σ1(m,lm),

where ∑
σ∈S(kn)

(−1)|kn|−cyc(σ )
∏
m,lm

Wm,σ1(m,lm) = |W(kn)|,

which is null unless kn ∈ {0, 1}n. Thus, with |W({m1, . . . , mp})| a principal minor of W

|I + zUW | = 1 +
n∑

p=1

zp
∑

1�m1<···<mp�n

p∏
q=1

umq
|W({m1, . . . , mp})|.

Note that

1 − |I − zUW | =
n∑

p=1

(−1)p−1zp
∑

1�m1<···<mp�n

p∏
q=1

umq
|W({m1, . . . , mp})|

so that

|I − zUW |−1 = 1

1 − (1 − |I − zUW |) .
From these combinatorial developments, it is clear (from positivity of induced

probabilities) that if W is definite non-negative, the occupancies Kn,z are well defined under
Pα for all α > 0 and infinitely divisible. If in addition W is definite non-negative, all principal
minors of W are non-negative and so Kn,z are well defined under Pα for all α ∈ {. . . ,−2,−1}.
For more on permanents, determinants, MacMahon master theorem and the like, see [2, 5, 7,
26, 29, 30].

5. Doubly non-negative and infinitely divisible weight matrices.
Spatially extended boxes

Recall a weight matrix which is both non-negative and non-negative definite is a doubly non-
negative matrix. As underlined before, doubly non-negative weight matrices play a special
role in our occupancy problems.

5.1. A probabilistic construction of doubly non-negative weight matrices

Let us first give a systematic construction which generates doubly non-negative matrices. In
the process, we shall obtain the spatially extended system on the real line discussed in the
introduction.

Let (X1, X2) be a pair of iid random variables on R with a density, say φ(x). Consider the

random variable X = X1 − X2. Its density, say f (x), exists and is given by f (x) = φ∗
∨
φ (x),
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x ∈ R, where
∨
φ (x) := φ(−x) and ∗ stands for convolution. Clearly, f (x) = f (−x) and f

is symmetric. Let (iλ) = E(eiλX1) be the common characteristic function of both X1 and
X2. Then |(iλ)|2 is the (real) Fourier transform of f (x) or the characteristic function of X.
Clearly g(λ) := 1

2π
|(iλ)|2 � 0 for almost allλ and since f is continuous and integrable,

by Bochner theorem, f is definite non-negative in that, for all integer n, all real numbers
x := (xm,m = 1, . . . , n) and all z ∈ C

n : z′[f (xm − xm′)]z � 0. In this interpretation,
the function g(λ) should be regarded as the integrable spectral density associated with the
correlation functionf . Here, [f (xm − xm′)] is the n × n square matrix whose (m,m′) entry
is f (xm − xm′). Assuming W = [Wm,m′ ] and Wm,m′ = f (xm − xm′), then the weight matrix
is doubly non-negative. It should be emphasized that strictly speaking, W = W(x), which is
now a function of x. Also note also that this construction yields a correlation function which
is also a probability density function so that the total mass of f is 1, which is purely arbitrary.

Let ψ(x) � 0 be any non-negative function on R. Then, with Wm,m′ = ψ(xm)f (xm −
xm′)ψ(xm′),W := [Wm,m′ ] is diagonally congruent to the latter and so is also doubly non-
negative. Clearly, its entries are indeed non-negative and definite positiveness is preserved
under congruence. If ψ(x) = C > 0, this constant can be used to readjust the mass of f if
needed.

Remarks.

(i) Let P be the permutation matrix which maps the indices of (xm,m = 1, . . . , n) into the
those of −∞ < x1 � · · · � xn < ∞, where now xm are ordered on the real line. By
considering instead the novel congruent weight matrix P ′WP , we can assume, without
loss of generality, that Wm,m′ = ψ(xm)f (xm − xm′)ψ(xm′), where xm are ordered. Note
that in this construction, a particle is attached to the box number m if and only if it stands
at the mth position xm on the real line. In this context, Hm,m′ := − log Wm,m′ is now the
energy required to move a particle from site xm to site xm′ .

(ii) Let wx be a (stationary) white noise (δ-correlated) process, indexed by x ∈ R. Let
zx := (φ ∗ w)x , where φ is as above. Then zx, x ∈ R, is a stationary process whose

correlation function is Cov[zx ′zx ′+x] = f (x) = φ∗
∨
φ (x).

(iii) Assume that both (X1, X2) have a common law supported by (0,∞) in the above
construction. Then, it can be checked that f (x) = h(|x|), where h(z) = ∫ ∞

0 φ(y +
z)φ(y) dy, z > 0.

(iv) Assume that both (X1, X2) have a symmetric common law supported by R. Then
f (x) = φ∗2 and E(eiλX1) is real. A given f belongs to this class if it is 2-divisible
on R. Note that f (x) = h(|x|), where h(z) = ∫

R
φ(z − y)φ(y) dy, z > 0.

(v) Exploiting this Fourier isomorphism on integrable positive functions, reversing the role
played by ‘space’ x and wave number λ, we conclude that f (x) = 1

2π
|(ix)|2 is a

correlation function whose associated spectral measure is g(λ) = φ∗
∨
φ (λ), λ ∈ R.

Examples.

(i) Let φ(x) = e−x1 (x > 0). Then, f (x) = e−|x|/2, x ∈ R, is a continuous
integrable correlation function with spectral density g(λ) = 1/[π(1 + λ2)]. For all n
and −∞ < x1 � · · · � xn < ∞, the matrix W = [e−|xm−xm′ |] has the required properties.
Let ψ(x) = ex . Then, with Wm,m′ = exm e−|xm−xm′ | exm′ = min(e2xm, e2xm′ ),W := [Wm,m′ ]
also has the required properties. Specifying xm to xm = (log m)/2, the matrix with entries
min(m,m′) has the required properties. Putting tm = exm,W := [min(tm, tm′)] has the
required property where we recognize the correlation kernel of the standard Brownian
motion on R+.



9196 T Huillet

(ii) Let φ(x) = 1√
2π

e−x2/2, x ∈ R.

Then g(λ) = 1
2π

e−λ2
, showing that f (x) = φ∗2(x) = ∫

R
e−iλxg(λ) dλ = 1

2
√

π
e−x2/4,

x ∈ R.
(iii) Assume φ(x) = exp[−(x +e−x)] so that X1 has Gumbel density on R. One can check that

f (x) = 1/[2(1+cosh(x))]. We have (iλ) = �(1−iλ) and g(λ) := |�(1−iλ)|2/(2π) =
λ/2 sinh(λπ).

More generally, let β > 0 and assume now φ(x) = exp[−(βx + e−x)] on R. Then,
with B(., .) the Euler beta function, f (x) = [1/2(cosh(x/2))]2β/B(β, β). We have
(iλ) = �(β − iλ)/�(β) and g(λ) := |�(β − iλ)|2/(2π).

Specifying β = 1/2, we obtain

f (x) = 1/(2π cosh(x/2)) and g(λ) = 1/[2π cosh(πλ)].

This shows that the pair f (x) = 1/cosh(x) and g(λ) = 1/ cosh(πλ/2) is admissible.
Thus Wm,m′ = 1/ cosh(xm − xm′), but also

Wm,m′ = exm exm′ /[2 cosh(xm − xm′)] = 1/(e−2xm + e−2xm′ )

is doubly non-negative. Assuming a lattice case xm = (− log m)/2, the Cauchy matrix
with entries 1/(m + m′) has the required properties.

(iv) Assume f (x) = 1
2�(1+1/γ )

e−|x|γ , x ∈ R, γ ∈ (0, 1]. The above construction could
apply if, in particular, one could prove that there is a φ supported by (0,∞) such that

1
�(1+1/γ )

e−zγ = ∫ ∞
0 φ(y + z)φ(y) dy, z > 0. But, unless γ = 1, this is not the case. In

fact, in this case, there is a symmetric φ such that f (x) ∝ e−|x|γ = φ∗2. φ is characterized
by 2

∫ ∞
0 cos(λx)φ(x) dx = [2πg(λ)]1/2, where g(λ) is a symmetric stable(γ ) density

(see [11], page 583, for an expression). Indeed, f (x) is a symmetric distribution whose
density is restricted to (0,∞), namely, f+(x) = 1

�(1+1/γ )
e−xγ

, x ∈ R+, γ ∈ (0, 1), is
completely monotone. By theorem 10.1, page 202 of [28], f (x) is infinitely divisible so
that, for k integer, there is a probability density φk on R such that f = φ∗k

k . The above
claim follows from this with k = 2.

However, it is not necessary to prove this to conclude that f (x) (even when γ ∈ (0, 2])
is indeed a correlation function because g(λ) := 1

2π

∫
R

eiλxf (x) dx is a stable (strictly
positive) density with shape parameter γ and so is �0 for almost all λ.

(v) Assume φ(x) = 1(x ∈ [0, 1]). Then, f (x) = (1 − |x|) 1 (x ∈ [−1, 1]) and
g(λ) = 1

2π

( sin λ/2
λ/2

)2
is an admissible pair. Note that 1 (x ∈ [0, 1]) is not itself a correlation

function as its Fourier transform, which is 1
π

sin λ
λ

, is not � 0.

The set of doubly non-negative correlation functions forms a closed cone as this property
is preserved under convex linear combinations and point-wise products and if a sequence
(fk; k � 1) of such correlation functions converges, then the limit remains doubly non-
negative.

If f1 and f2 are two doubly non-negative correlation functions with associated weight
matrices Wi = [fi(xm−xm′)], i = 1, 2, then the weight matrix W associated with f = f1 ×f2

is W = W1 ◦ W2, where ◦ stands for the Hadamard (or Schur) entry-wise product. The
Hadamard product of doubly non-negative matrices indeed is a doubly non-negative matrix.

Fix 1 � m1 < · · · < mp � n a subsequence of length p from {1, . . . , n}. Considering the
principal sub-matrices W({m1, . . . , mp}) of W , we get a sub-matrix of the same type as the
original one. This is useful in the computation of |W({m1, . . . , mp})| since this can be read
from that of |W |. For instance, if W = [(exm + exm′ )−1], it has been known since Cauchy that

|W | =
∏

1�m<m′�n(e
xm′ − exm)2∏

1�m<m′�n(e
xm′ + exm)

.
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From this, we immediately get

|W({m1, . . . , mp})| =
∏

1�q<q ′�p(exm
q′ − exmq )2∏

1�q<q ′�p(exm
q′ + exmq )

.

5.2. Infinitely divisible weight matrices

We shall briefly discuss here conditions under which raising W to the power β (in some sense)
gives birth to a family of doubly non-negative matrices for all β > 0.

• Let H be a n×n symmetric matrix. With β > 0, consider the weight matrix Wβ := e−βH .
For all β > 0, this weight matrix is definite non-negative (eigenvalues are real and non-
negative) but, unless some extraordinary circumstances, its off-diagonal entries have no
reason to be non-negative, even if W = e−H were chosen so as to have itself non-negative
entries. A question could be: which are the doubly non-negative weight matrices W whose
β-powers remain doubly non-negative for all β > 0? Preserving positive definiteness and
entry-wise positivity of (standard) β-powers together is a very rare combination and very
much basis dependent. We now turn to a related question which is more meaningful in
our context.

• Let W be a doubly non-negative weight matrix. With β > 0, let W ◦β be the Hadamard
β-power of W , with entries (W ◦β)m,m′ := W

β

m,m′ . This new matrix has non-negative
entries and, in any case, when β � βc := n − 2 it remains definite non-negative (see
[12]). However (when n � 3), only under some peculiar circumstances it is still a non-
negative definite matrix for all β > 0 (although by the Schur theorem, it always is when β

is an integer). Doubly non-negative matrices whose Hadamard β-powers remain doubly
non-negative for all β > 0 are called infinitely divisible (ID) matrices (see[3]). The Schur
product of infinitely divisible matrices yields a novel infinitely divisible matrix. Examples
of infinitely divisible matrices are

Wm,m′ = (exm + exm′ )−1, �(exm + exm′ + 1)/[�(exm + 1)�(exm′ + 1)],

max(exm, exm′ )−1 = min(e−xm, e−xm′ ), cosh
(

1
2 (xm − xm′)

)−1
,

exp[−|xm − xm′ |], and more generally exp[−|xm − xm′ |γ ] for γ ∈ (0, 2],

where −∞ < x1 � x2 � · · · � xn < ∞.

In some (stationary) cases, the correlation kernel Wm,m′ = W(xm, xm′) only depends on
the difference of (xm, xm′).

Remark. In the above language to construct doubly non-negative weight matrices W from
positive correlation functions f , it can be checked directly that W is infinitely divisible if and
only if f (x)β remains a correlation function for all β > 0 which clearly is the case for the
examples displayed above. If the correlation function f fulfills this property, then, considering
its spectral density g(λ), for each integer k, there is a spectral measure gk(λ) such that g = g∗k

k .

In this context, infinite divisibility is the eventual property of the spectral density.

For such infinitely divisible doubly non-negative matrices (with strictly positive entries),
the Hadamard logarithm of W , defined by

H := [Hm,m′ ] and Hm,m′ = − log Wm,m′ ,

satisfies z′Hz � 0 for all z ∈ C
n such that

∑n
m=1 zm = 0; the ‘energy’ matrix H is said

to be conditionally definite non-positive. The converse is also true: conditional definite
non-positivity of H implies infinite divisibility of W = e−◦H (see [25]).
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Further, H is conditionally definite non-positive if and only if the (n−1)× (n−1) matrix
� with entries

�m,m′ = Hm,m′ + Hm+1,m′+1 − Hm,m′+1 − Hm+1,m′ , m,m′ ∈ {1, . . . , n − 1}
is definite non-positive (z′Hz � 0 for all z ∈ C

n).

Example. The matrix Wm,m′ = exp[|xm|γ + |xm′ |γ − |xm − xm′ |γ ] is ID because it is congruent
to an ID matrix when γ ∈ (0, 2]. Therefore, −Hm,m′ := log Wm,m′ = |xm|γ + |xm′ |γ − |xm −
xm′ |γ is conditionally definite non-negative. In the latter expression, we can recognize the
correlation kernel of fractional Brownian motion with the Hurst exponent γ /2.

A block-diagonal matrix whose Jordan blocks are individually infinitely divisible is
globally infinitely divisible. So is a matrix which can be brought into this form after a
simultaneous permutation of its rows and columns.

Assume that particles can only be placed in boxes in the positions −∞ < x1 � x2 �
· · · � xn < ∞ on the real line. In this setting, the box number of a particle is the index of
its position on R and the model is spatially extended. Let W ◦β with W = e−◦H be infinitely
divisible where Hm,m′ = H(xm, xm′) are, say, as in the previous examples. For such matrices
W , for all α ∈ (0,∞], β > 0,

Eα

(
n∏

m=1

uKn,z(m)
m

)
=

( |I − zαW ◦β |
|I − zαUW ◦β |

)α

is the probability generating function of a well-defined infinitely divisible random vector
corresponding to box occupancies associated with W ◦β . When α = 1 (Bose–Einstein
statistics), it addresses the problem of computing the grand-canonical weight of the
configurations obtained by rearranging an average number κ = κ(z) of multi-type particles
when the weight associated with the transition m to m′ at ‘temperature’ 1/β > 0 is
e−βHm,m′ . The probability of these configurations follows next upon normalizing. Since for
all β > 0,W ◦β has all its minors non-negative, it is also the probability generating function
of a well-defined generalized multinomial random variable when α ∈ {. . . ,−2,−1}. We note
that, since W ◦β is definite non-negative,

|I − zαUW ◦β |−α = |I − zαU 1/2W ◦βU 1/2|−α =
n∏

m=1

(1 − zαλm,β(u))−α,

where λm,β(u),m = 1, . . . , n, are the real non-negative eigenvalues of U 1/2W ◦βU 1/2 which is
congruent to W ◦β and definite non-negative for all u ∈ [0, 1]n. Therefore, with λm,β := λm,β(1)

the eigenvalues of W ◦β

Eα

(
n∏

m=1

uKn,z(m)
m

)
=

( |I − zαW ◦β |
|I − zαUW ◦β |

)α

=
n∏

m=1

(
1 − zαλm,β

1 − zαλm,β(u)

)−α

.

This shows that the probability generating function of Kn,z under Pα can be factorized. As
a very particular (interaction-free) example, if 0 < x1 � x2 � · · · � xn < 1 and if W =
diag(x1, . . . , xn), then H = diag(ε1, . . . , εn) with εm = − log xm, 0 < εn � · · · � ε1 and

Eα

(
n∏

m=1

uKn,z(m)
m

)
=

( |I − zαW ◦β |
|I − zαUW ◦β |

)α

=
n∏

m=1

(
1 − zαe−βεm

1 − zαume−βεm

)α

with independent negative binomial factors. In particular, if α > 0,

Pα(Kn,z = kn) =
n∏

m=1

(1 − zα e−βεm)α · z|kn|
α

n∏
m=1

(α)km

km!
e−βkmεm , kn ∈ N

n,
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which favors states with lower energy. This model is familiar in occupancy problems of
discretized energy levels.

Also note that the canonical occupancy probabilities on the simplex |kn| = k are

Pα(Kk,n = kn) = 1

Zk,n,α(β)

n∏
m=1

(α)km

km!
e−βkmεm .

corresponding when α = 1 (respectively α ↗ ∞) to a BDE-BE (respectively BDE-MB)
occupancy model in the terminology used in section 2. Here, energy ekm,m required to put km

particles within the box number m is box dependent: it reads ekm,m = kmεm, where εm interprets
as the energy required to put a single particle within the box number m,m = 1, . . . , n.

Acknowledgments

I should like to thank Professor David Vere-Jones, from the University of Wellington, New-
Zealand, for sending me some of the relevant literature. This largely motivated the present
work.

References

[1] Aringazin A K and Mazhitov M I 2002 Combinatorial interpretation of Haldane–Wu fractional exclusion
statistics Phys. Rev. E 66 026116

[2] Bapat R B 1990 Permanents in probability and statistics Linear Algebra Appl. 127 3–25
[3] Bhatia R 2006 Infinitely divisible matrices Am. Math. Mon. 113 221–35
[4] Bialas P, Burda Z and Johnston D 1997 Condensation in the Backgammon model Nucl. Phys. B 493 505–16
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